n 单相电能质量分析仪

C.A 8230

中文版

用户手册

感谢您购买 C.A 8230 单相质量分析仪 (Qualistar)。
为得到最佳服务,请:
§ 仔细阅读操作条令。
§ 遵守使用注意事项。

本手册所使用符号的意义。

注意 - 危险! 参阅用户手册 回收箱打叉表示该产品遵守欧盟 WEEE2002/96/EC 条例,即必须可以接受选择性电气、电 子材料的再循环利用处理。

使用前注意事项

使用仪器时务必遵守以下所列注意事项,违规使用仪器可能导致触电、爆炸或火灾。

§ 遵守 13.4.1 章节所述之使用气候条件。

§本仪器可用于第Ⅲ类测量安装检测,CATⅢ对地电压真有效值不超过 600V(符合 IEC 60664-1 标准)。

- § CAT III:第 III 类测量对应建筑安装量测。例如: 仪表分布测量、布线测量等。例如: 仪表分布测量、布线测量等。
- § CAT IV:第 IV 类测量对应低压设备源量测。例如: 过电压保护设备的计量和量测
- §出于您的安全考虑,请仅使用随设备所附之导线和配套附件(符合 IEC61010-031(2002)标准)。当低压及/或低类别传感 器或附件连接至设备时,该低压及/或低类别则适用至该系统。
- §更换电池时,仪器必须断开连接、移除测量导线。

质保

除非特别说明,自仪器销售日期起,我们提供一年的质保期。(如果法国 CA 公司确认仪器是因自行改造、非正常操作、接 线错误,或因跌落、外力撞击所造成的损坏,用户需承担所有维修费用及相关运输费用)

_	
1	产品介绍5
2	
3	产品介绍7
	3.1 概述
	3.2 升关键
	3.3 功能模式键7
	3.4 导航键
	3.5 显示屏
	3.6 检查灯
	3.7 红外光口界面
	3.8 接线端口
	3.9 供电电源
	3.10 支撑架10
	3.11 功能总结10
	3.12 缩与
4	组态改定
	4.1 子采甲选择
	4.2 语言
	4.3 ① 时间/日期13
	4.4 ● 对比度/亮度
	4.5
	4.6 【4.5] 计算方法
	4.7 5 ♥ 电气接线选择14
	4.8 《上》电流钳选择14
	4.9 回记录模式15
	4.10 🖓 告警模式
	4.11 圖 删除数据
_	4.12 ♥ 本机信息
5	□ 波形模式
	5.1 丁米里
	5.2 波形
	5.3 而 电压,电流放值和均值
	5.4 · · · · · · · · · · · · · · · · · · ·
,	5.5 ···· 相序计算
0	□□·J·J·学 侯氏
7	0.2 电影消耗
1	□ 用 似 侠 八
	7.7 V 相由庄 24
	7.2 ————————————————————————————————————
	7.3

	7.4 VA	视在功率	23
	7.5 <mark>¥ -,+</mark>	相电压专家模式	23
	7.6 🔺+	电流专家模式	24
8	🖻 截屏	模式	24
	8.1 截屏		24
	8.2 快照处	理	24
9	(스) 告警	模式	25
	9.1 子菜单		25
	9.2 日	告警侦测排查	26
	9.3 🔛	显示告警日志	26
	9.4 📟	删除告警日志	27
1() 🔤 记录	录模式	27
	10.1 子菜单	单	27
	10.2 🛃	预设并开始记录	27
	10.3 凸 🗎	主动停止当前记录	28
	10.4 自动停	亭止记录	28
	10.5 🔛	• 显示记录列表	28
	10.6 记录第	案例	29
	10.7 🚾	删除记录	30
	10.8 📈	。 启动电流(开始电流)	31
	10.9 凸 🗎	主动停止当前记录	32
	10.10 浏览	百合动电流记录	32
1	1 使用		33
	11.1 开机		33
	11.2 C.A	8230 组态设定	33
	11.3 导线运		34
	11.4 波形樹	模式 [℃]	35
	11.5 告警核	模式 今	35
	11.6 记录椅	_{莫式} [@	35
	11.7 功率植	莫式	35
	11.8 谐波测	께률 [հետ]	35
	11.9 传输数	数据至 PC	35
	11.10 删除	数据	36
	11.11 关机		36
	11.12 CA8	3230 供电	36
12	2 维护和保	禄养	36
	12.1 重要到	建议	36
	12.2 电池3	充电 	36
	12.3 清理乡	外壳	36
	12.4 校准 .		36
	12.5 维修.		36
	12.6 内部转	次件升级	36

录

目

12.7 电流钳	36
13 总体指标	37
13.1 电源	37
13.2 电池供电	37
13.3 适用范围	38
13.4 环境条件	38
14 功能特性	39
14.1 参考条件	39
14.2 电气特性	39
15 附录	44
15.1 数学公式	44
15.2 回差	45
15.3 波形模式中的最小刻度值	46
16 订购	47
16.1C.A8230 电能质量分析仪	47
16.2 附件	47
16.3 配件	47

1 产品介绍

C.A 8230 是符合 IEC 61010-1 III 类 600V,具 有图形显示屏 的单相 AC+DC 电能质量分析仪。 它可用于测量电压电流有效值、功率、及电力配电 系统的干扰,及快速检测电网的主要特性及在一定 的时间内追踪各个电量参数的变动情况。

它具有高度整合的耐撞击外壳,而且采用极佳的人 机界面设计, 使其操作相当简便、直观。

C.A 8230 不仅可快速检测电网的主要特性,并 且可记录电量的 变动情形。其多工测量系统设计, 可以同时进行测量电量参数、 侦测告警、及连续记 录各个电量的趋势图。其提供了绝佳的弹性

,让客户可以选择不同的电流传感器(电流钳)来 测量电流,从数百毫安(MN93A) 到数千安培 (AmpFLEX)。

C.A 8230 是专为检测及维护部门电工技师及 工程人员所设计,尤 其适用于工业用户及供电公司 (36 至 250kVA 及大于 250kW 系统容量),作为 检查及侦测单相或三相低压配电系统。其主要功能 有:

●测量交流电压有效值,可达 600 V(相电压)及 660

●V(线电压) - 相对地电压不超过 600 V 测量交流电流有效值,可达 6,500 A

- ●测量电网频率: 40 Hz 至 69 Hz
- ●计算电压及电流的波峰因数
- ●计算电流(变压器)的 K 因数
- ●计算电压的短时闪变(short-term Flicker)
- ●测量谐波达 50 次,包含相位及其值(相对基波): 电压、电流及视在功率,计算总谐波畸变率
- ●测量有各相有功功率、无功功率、视在功率,及 总和
- ●计算功率因数、位移功率因数及正切值
- ●积算由操作者选择时段的电能生产及消耗值
- ●记录任何电量参数的平均值,积算时间间隔可组态为1秒值至15分钟
- ●记录电压干扰(含时间标记),如电压升、电压 降、断电等,及功率过载、谐波门限等等。

2 包装

标配

条目	数量
安全导线(红/黑)	2
鳄鱼夹(红/黑)	2
用户手册光盘	1
USB 光口线	1
测试探头(红/黑)	2
AA 电池	6
外接电源	1
便携包	1
MN93A 或 AmpFLEXA193 电流钳	-
DataViewer 光盘	1
选配	
条目	
MN93, MN93A, C193, PAC93钳头	

5A 适配器盒(三相)

3 产品介绍

3.1 概述

- 图 1:CA8230 外观图
- 1. 接线端子
- 2. 显示屏
- 3. 电源开关键 (绿色).
- 4. 工作模式选择键 (蓝色).
- 5. 方向选择键
- 6. 确认键
- 7. 红外光口 RS232 界面
- 8. 检查灯

3.2 开关键

按下 一 键即可开启仪器电源; 仪器开机过程 需大约 5 秒左右。再次按下本键可关闭仪 器, 但仪器内部已记录在内存的数据值及截 屏 快照将会被保存。无论如何, 当仪器在记 录模式下工作时,如按下开 关键,则屏幕会 弹出确认讯息要求用户在次确认。

3.3 功能模式键

这些键是作为各个工作模式间的切换:

按键	功能
00	记录模式:显示已记录的数据趋势图、组态设置新的记录活动、 删除记录数据等。记录模式的设置可在组态设定模式下的 "Records(记录)"菜单内进行。
(¢)	告警模式:显示已记录的告警、 搜寻在某时间内的告警、删除 告警等。告警的触发临限值及回 差可在组态设定模式下的 "Alarm(告警)"菜单内设置。
	组态设定模式:设置组态仪器 (包含日期、时间、屏幕 对比 及亮度、接线方式、告警及记录 模式的组态设置等。
	波形模式:显示电压、电流的波 形图;显示最小值、最大值及 一览表等;检测相序等。
W	功率/电能模式:显示功率及电能相关的测量值
ļ.	谐波模式:显示与谐波相关的各 次条形图
6	屏幕显示截屏(及屏幕快照保 留,持续按下本键2秒以上) 或再次显示截屏图像及管理截 屏图像。

7

3.4 导航键

4个方向选择键及一个确认键作为菜单项目的选取。				
按键	功能			
	选项上移一行			
$\overline{\nabla}$	选择下移一行			
()	选项左移一行;向左移动游标。			
	选项左移一行;向左移动游标。			
-	选项确认键或从目前的项目组 态中离开。			

3.5 显示屏

CA8230 采用彩色 LCD 显示屏 (分辨率 320x240) 作为测量 结果显示。当开机后,系统自动进入波形显示模式。 基本上一下信 息会显示在屏幕上:

图 2: 显示屏显示范例

- 项 功能
- 1 目前仪表模式 (波形模式)
- 2 目前模式下的屏幕显示图形 (波形 图)
- 3 目前日期、时间.
- 4 电池剩余容量.

在告警模式或记录模式下(等待进行或正在进 行中),如果超过5分钟未按任何键,系统会 自动进入省电模式(屏幕关闭)。按下任何键 即可唤醒系统,屏幕亮起。

3.6 检查灯

检查灯 (图 1, 第8项)(黄色 LED 灯号)位于 仪器的右下方:

 ●常亮表示: 仪器目前使用外部 AC 电源适配器供●电闪烁表示: 仪器目前处于省电模式, 且未使用外部电源

3.7 红外光口界面

本接口提供隔离、双向传输的红外光通讯界 面(图1,第7项),使计算机可以导入仪器 内存中,所存储的信息资料(如 告警、屏幕 截图、启动电流、及所记录的电量趋势图等), 并可在计算机软件中实

时显示 CA8230 屏幕上的所有测量实时值 及波形

另外,可利用计算机软件来组态仪表的设置, 之后再导入到仪器中,也可以经由通讯界面来 更新仪器内部的轫件。

仪器的通讯传输速率,会被自动调整同计算机软件所设置的速率;最大传输速率为 115.2 kbps.

3.8 接线端口

所有接线端口位于仪器上方,具有以下功能:

项 功能

- 1 本仪器专用外部 AC 电源适配器插 座
- 2 电流钳插座(MN型、C型及 AmpFLEX 等电流钳等)
- 3 电压测量线安全插座(负极)
- 4 电压测量线安全插座(正极)

3.9 供电电源

3.9.1 电池剩余电量显示

仪器开启后,位于液晶屏幕右上方的电池剩余 电量显示符号,可指示目前充电电池的充电情 况。电池符号内的比例条,可直观的了解电池 充电电量:

图示 电池情况说明

● 电池电量即将耗尽

••••• 移动的比列条: 电池正在充电

●~ C.A 8230 使用外部 AC 电源

当电池电量过低时,屏幕中央会显示 'Battery too low. The instrument will be switched off soon'(电池电量过低,仪器即将关闭)。当用 户看到此信息时,仪器将会在一分钟后自动 关闭。

3.9.2 电池使用时间

至少可持续 8 小时屏幕显示(带背光)的使 用操作时间 40 小时的省电模式(显示屏幕关闭)使用时间。

3.9.3 电池充电

仪器内部使用的充电电池,是使用外部 AC 电源适配器来进行充电的。仪器上部有可接 AC 电源适配器的接线插座,(图 3,项目 1)。请勿使用非随仪器交付的其他 AC 电源适配器。但电池电量用尽,重新充满电池电量大约需花费 4 小时左右的时间。当电池电量已经充满,仪器会自行切换使用外部 AC 电源,并停止继续对电池充电。

提示:但仪器接上外部的AC电源适配器时, 仪器的橘黄色指示灯(图1,项目8)会亮起。 3.9.4 更换充电电池

当要更换充电电池时,必须移除仪器上所有的接线及外部 AC 电源。 C.A 8230 可根据内部时钟设定,可保持约1分钟的时间。 3.9.5 充电电池

C.A 8230 使用 6 节 型号为 AA (LR6 - NEDA 15) 的镍氢(NiMH) 充电电池(图 4,

项目 1),容量为 1800 mAh,其可维持约 8 小时 的使用时间(不接外部 AC 电源)。单仪 器进入省电模式时(即仪器 屏幕显示关闭 时,通常是在告警模式或记录模式下),在电 池充满电 量的情况下可维持约 40 小时。 使用铜板(图 4,项目 3)旋转 C.A 8230 的后背盖板上的塑料旋钮(图 4,项目 2), 打开后背盖板后,可以取出充电电池。

提示:如使用 NiCd 充电电池 (900 mAh), 电量充满时间约为1小 时半,可持续正常操 作约4小时,或在省电模式下(液晶屏幕关闭)工作20小时。

3.10 支撑架

CA8230 仪器后方具有一可拉出/收回的支撑架 (图 4, 第 4 项),可使 仪器以前面板倾斜 30°的角度立在工作台上。

3.11 功能总结

- 3.11.1 测量功能
- RMS AC电压可达600 V.
- RMS AC电流可达6,500 A.
- DC电压及电流.

• 电压、电流的半波有效值、最小值、最大 值

- 电压 及 电流的峰值
- 适用于 50Hz或60Hz的电网频率 (测量范围: 40 至 70Hz).
- •电压及电流的 峰值因数
- •电流的 K因数 (KF) (变压器适用)
- •电压及电流的失真因数 DF (也称 THD-R).
- 电压及电流的总谐波畸变率 THD (也称 THD-F).

• 有功、无功 (电容性及电感性)、及视在功 率

- 功率因数(PF)及位移功率因数 (DPF 或 CosΦ).
- •三相平衡电网的总有功、无功 (电容 性,电感性)及视在功率(含或不含

中性线)

• 三相相序检测 (2-线法):显示三相电网相序

- •使用MN93A电流钳(5A档位)或5A 适配箱时,可组态电流的一/二次 的比数
- 自动辨识电流传感器(电流钳)型号
- 显示电压 及 电流波形
- 短时闪变 (PST).
- 有功、无功 (电容性或电感性)、及 视在电能(三相平 衡模式下总电 能).
- 电流及电压的谐波达50次:包含RMS有效值、占基波的百分比值、最小值、最大值(单相模式)及谐波的序次
- 视在功率的谐波(单相模式)可达50次:包含RMS有效值、占基波的百分比值、最小值、最大值
- 3.11.2 显示功能
- 谐波条形图
- "Inrush" (启动电流)记录: 检视电动机 起动时相关的电量参数。
 - 经由时间游标检视电流瞬态值
 - 起动电流的瞬态最大值
 - 时间游标指示点的电流半周期RMS值
 - 电流的 RMS 值、最大半周期值 (for the whole start).
- 电动机启动时间

• 屏幕截图

• 记录活动("数据记录") (960kB 内存空间,含时间标记及所设置记录活动的开始及结束时间)。也可显示已记录的数据,以条形 图或去曲线图的形态,显示所有已记录数据在各个时间点的平均值。

• 告警;列表所记录的告警(可达 4096 个告警,64kB)及其在 组态菜单中所设置的 临限值。告警监视活动所设置的开始时间及 结束 时间。

- 3.11.3 组态功能
- 日期时间设置
- 液晶屏亮度及对比度设置
- 图形曲线颜色设置
- 功率及电能计算方式设置(含或不含谐

波)

- 语言设置(目前无中文)
- 接线组态设置(标准单相 或 平衡三相)
- 记录模式及告警模式的参数设置
- 清除所有数据

3.12 缩写

单位	代表意思
~	AC及DC成分
~	AC 成分
=	DC 成分
Φ	相电压与相电流之间的相角(相
	位差)
Acf	电流的峰值因数
Ahx	电流的 'x' 次谐波值.
Akf	电流 K 因数(变压器适用)
Arms	电流真有效值
Athd	电流总谐波畸变率
CF	见 Vcf 及 Acf.
DC	电流及电压(如在3相模式,为
	线电压值)的直流成分
DF	失真因数(电压 或 电流)
DPF	位移功率因数(相角的余弦值)
Hz	电网频率
KF	见 Akf.
PF	功率因数(有功功率与视在功率
	的比值)
PST	见 VPST
RMS	见 Arms 及 Vrms
Tan	相角正切值
VA	视在功率(如在3相模式,则为
	总视在功率值)
VAh	视在电能(消耗或产出;如在3
	相模式,则为3相总值)
VAR	无功功率(如在3相模式,则为
VARh	尤切电能(消耗或产出;如在 3
	相模式,则为3相尽值)
Vct	电压波峰因级(如仕3相模式,
	入 我 电 広 国 ノ

Vhx	电压的 'x' 次谐波值 (如在 3
	相模式,为线电压值)
VPST	电压短时闪变
Vrms	电压真有效值(如在3相模式,
	为线电压值)
Vthd	电压总谐波畸变率(如在3相模
	式,为线电压值)
W	有功功率(如在3相模式,为总
	有功功率).
Wh	有功电能(消耗或产出;如在3
	相模式,则为3相总值)

4 组态设定

此按键用来设置 CA8230, 在仪器使用前必须对仪器 进行设定,设定会保存在仪器内存中,就算仪器关 闭了,也不会丢失设置。

4.1 子菜单选择

诵讨▲	▼键来选择菜单,	➡ 键来确定
~~~~		



菜单名	子菜单	参阅
日期/时间	时间和日期设置	4.3
对比度/亮度	屏幕亮度和对比度设	4.4
	<b>里</b> 直	
颜色	电压和电流波形曲线	4.5
	颜色设定	
计算方法	无功参数选择(含/不含	4.6
	谐波)	
电气接线连	电气连接至电网类型	4.7
接	选择 注意:计算方法	
	取决于连接类型	
电流钳选择	电流钳头选择(MN,C,	4.8
	PAC,AmpFlex™,适配	
	器)	
记录模式	记录所设定的参数	4.9
告警模式	告警定义 🗘 .	4.10
删除记忆	部分或全部删除	4.11
	用户数据	
关于	序列号、软硬件版本等	4.12

4.2 语言

按屏幕所示图标之对应黄色按键选择系统显示语言

(图 6 中 1 所示)。黄颜色背景图标标识当前使用语 言。

# 4.3 ①时间/日期

该菜单定义系统之时间和日期,如下图所示:

14/11/05 11:44	-9998
14/11/05 11:43	
DD/MM/YYYY	
12/24	
	14/11/05 11:44 14/11/05 11:43 DD/MM/VYVV

#### Figure 5: The Date/Time menu.

1 按 ← 键更改时间/日期设置。•,箭头表示当前值 可改变,按•,键更改。按 ◆ ▶ 键选择域,按 ← 确认。 2 更改日期格式设置。按•,键使日期格式域黄颜 色高亮显示,按 ← 确认。•,箭头表示当前值可改 变。按•,键选择 DD/MM/YY 或 MM/DD/YY,按 ← 键确认。

3 更改时间格式设置。按•,键使日期格式域黄颜 色高亮显示,按← 确认。•,箭头表示当前值可改 变。按•,键选择 12/24 或 AM/PM 格式,按← 键 确认。

注意:

12/24: 以 24 小时格式显示时间

AM/PM: 以 12 小时格式显示时间, 后接 AM 或 PM 4 按 圖键返回组态主菜单。

# 4.4 ①对比度/亮度

设置屏幕显示对比度和亮度,如下图所示:



# 4.5 📕颜色

设置按 , 和 @ 键后出现的电压、电流波形曲

线的颜色。可设置的颜色有:绿色,深绿色,黄色, 淡红色,红色,褐色,蓝色,青绿色,深蓝色,浅 灰色,灰色,深灰色及黑色。 屏幕如下图所示:



### 4.6 **X**=计算方法

设置计算无功参量(功率和电能)时是否使用谐波。

依据电网类型设置 C.A 8230 接线方式。



Figure 9: The Connection menu.

按如下步骤设置接线方式:

- 1. 按▲▼和◀▶键选择单相、平衡三相的连接。
- 2. 按┙键确认并返回组态主菜单。

# 4.8 @ 尼电流钳选择

C.A 8335 主机会自动显示当前连接电流钳类型。

		14/11/05 12:01	9998
CTR CUR	RENT SENSORS		
	-		
1000/5	CON 5A	MN Probe	

O RECOR	DING			
Set-up		CONFIG 1		
• Vrma	o Vthd	o Vcf	<ul> <li>VPST</li> </ul>	
¢ Arms	o Athd	o Acf	⇔ Akf	
ow.	OVAR	OVA	♦PF	
ODPF	o Tan	0 Hz		
0?				
07				

Figure 10: The Current sensor menu.

可选钳头有:

- ●MN93 钳头: 200A; MN93A 钳头: 100 A 或 5 A ●C193 钳头: 1000 A
- ●PAC93 钳头: 1000 A
- ●AmpFLEX™A193 或 Mini-AmpFLEX MA193: 6500 A
- ●三相适配器: 5A

警告:若使用 MN93A(5A)钳头或适配器,需按如下 方式配置:

1 变换比率 (变比) 定义

-5A 钳头:

按**▲**▶键选择各域,再按**↓**键选择电流变比;(初级 电路: 1A 到 2999A; 次级电路: 1A 到 5A) 按**▲**▼键选择各值。

-适配器:

按**∢**▶键选择各域,再按**↓**键选择电流变比;(初级 电路: 1A 到 2999A; 次级电路: 1A 到 5A)

按▲▼键选择各值。

2 按┙键确认。(注意: 必须按确认后设置才生效)

3 按 🗐 键返回组态主菜单。

# 4.9 🔤记录模式

C.A 8230 具有记录功能(), 参见第 10 章), 该 功能可记录所量测或计算的各值(如 Urms, Vrms, Arms 等)。相应功能可据需要单独组态。用户可以 设定四组自定义组态。 Figure 11: In this example, only measurements concerning Vrms will be recorded.

1 按对应CONFIG1图标的黄色按键定义配置 1,选中 后图标以黄颜色背景显示。

按∙	,和◀▶键移动黄色光标选取对应值,	按←	确
认。	红色项表示已选中。		
可证	已录的值有:		

值	说明
Vrms	相电压真有效值
Vthd	相电压总谐波失真
Vcf	相电压峰值因数
VPST	短闪变
Arms	电流真值
Athd	电流总谐波失真
Acf	电流峰值因数
Akf	K 因数(变压器使用)
W	有功功率(三相总)
VAR	无功功率(三相总)
VA	视在功率 (三相总)
DPF	位移功率因数
Tan	正切值
Hz	电网频率
?	参阅此处注释
最后两行	「需特别设置,如下所示,

0?

图 12: 此两行涉及谐波

0?

此两行涉及记录各次谐波 VAh, Ah, Vh 及 Uh 等值。 用户可以自主选择谐波等次(0到 50次)以记录相 应谐波,并可以选择只记录奇次谐波。 具体操作如下:

●输入记录值: ^(*) 以黄颜色高亮显示。按→键出现
现
,箭头。通过
,按键选取相应值(VAh, Ah, Vh及 Uh)以记录某个谐波。红色项表示已选取。按→
键确认,相应值域以黄色高亮显示。按^(*)键切换至

下一域。

●选择开始谐波等次:相应域以黄颜色高亮显示,按
➡ 键出现●,箭头,按●,键选择开始谐波等次,再按➡ 键确认。 按➡ 键切换至下一域。

●选择结束谐波等次:第二域(高于或等于开始谐波等次)以黄颜色高亮显示,按┙键出现•,箭头,按•,键选择结束谐波等次,再按┙键确认。按^②键切换至下一域。

 ●只记录奇次谐波:按➡ 键选中或取消只记录奇次 谐波,红色项表示已选。

已选: 只记录两个谐波等次中的奇次谐波

未选: 记录所有谐波(包括奇次谐波)

☑ RECOR	DING				
Set-up		C	ONFIG 1	6	
• Vrms	ov	ihd	o Vef	<ul> <li>VPST</li> </ul>	
o Arms	0 At	thd	o Acf	♦ Akf	
٥W	ov	AR	OVA	♦ PF	
ODPF .	o Ta	n i	o Hz		
• VAh	00	$\rightarrow$	07	○Odd Only	
• Ah	00	$\rightarrow$	08	Odd Only	

# 4.10 △告警模式

本菜单屏幕设置告警模式 🙆 中所使用的告警项

(参阅第9章)

				14/11/05 12:18	9000
44	ALARM:	\$			- 8
			Hysteresis 1	x	
1	OFF	?			
2	OFF	?			
3	OFF	?			
4	OFF	?			
5	OFF	?			
6	OFF	?			
7	OFF	2			
8	OFF	?			
9	OFF	?			
10	OFF	?			

Figure 14: The Alarm menu.

1 告警回差值(对应从告警阈值中增加或减少的百分比,可选值有1%,2%,5%或10%。如果超过该百分比将停止告警,参阅15.2章节。)

使用•,键选择竖直域

按┙键选中当前域,出现•,箭头。

按•, 键选择设置值(Vah, Ah, Uh 等, 参见 4.9 章表格)再按➡键确认, 被选中域以黄颜色高亮显 示。

2 按◆◆键横向选择各域,按◆→键确认,出现•,箭 头。按•,键选择设置值,按◆→键确认。以同样方 法设置各域其它值。

3 定义各个告警,可选择:

告警类型(Vrms, Arms, VPST, Vcf, Acf, Hz, Akf, Vthd, Athd, W, VAR, VA, DPF, PF, Tan, Vh, Ah, or VAh)(参考缩略语表)

4 谐波等次范围(0 到 50 次,针对 Vah, Ah, Uh 及 Vh 各值)

-告警意义(>或<只在 Arms, Urms, Vrms, Hz 下可选,否则只有一个方向)

- 触发告警阈值(在W, VAR及VA下设置至10种可能告警情况)

-跳过告警阈值最短时间(对 Vrms 和 Urms: 分钟, 秒(或只有秒);对 Arms: 几百秒)

-激活告警(红色项)或解除激活(参阅下文)

5 按 🖲 键返回组态主菜单。

# 

#### 删除储存在仪器中的数据



-No, 你回到参数菜单栏

-Yes, 屏幕出现 Data being erased, 然后仪器将 会自动关机,之后再开机,菜单全部为英语,CA8230 将不包含任何信息

# 按 🗐 键返回组态主菜单。

# 4.12 ①本机信息

屏幕将会显示本机序列号和软件的版本

Serial nu	mber	00001015	
Software	version	1.1	
Hardward	version	02	

Figure 16: The Information menu.

按回键返回组态主菜单。

5 回波形模式

波形模式可显示电压电流曲线图及其量测和计算值 (不包括功率、能量和谐波)

# 5.1 子菜单

各个子菜单一一列在屏幕下方,将在以下章节分别 介绍。

用户可按屏幕下方的黄色按键选择测量类型。



	THD 值	
2	显示(电压、电流或电压、电流	5.3
	峰值的)最大值、平均值和最小	
	值	
3	同时显示所有电压、电流量测值	5.4
	(RMS, DC, THD, CF, PST, KF,	
	DF)	
4	相序	5.5
5	帮助	-
注意	: 在平衡三相连接的情况下, 30符号	出现在原
幕上	方	
	· 40 00H+ 30 30 11 /05/08 21 48 (III)	í

Figure 18: The 3¢ sign at the top of the screen indicates a balanced three-phase connection configuration.

1095

#### 5.2 <u></u>波形

此模式显示波形,电压电流有效值,THD 值,峰值 因数(可以通过移动游标进行观察) 如下显示信息:



Figure 19: The information of the Waveforms screen.

- 项 功能
- 1 当前使用模式
- 2 网络瞬时频率
- 3 相电压有效值
- 4 当前时间和日期
- 5 电池电量
- 6 电压值轴线(自动调节刻度)

7 线电压波形

- 9 光标(图 中 8 所示)与曲线交叉点处信号的瞬时值
  - t: 相对开始阶段的时间(以毫秒表示)
  - V: 相电压瞬时值
  - I: 电流瞬时值
- 10 使用▲▼选择工具,使用 ●选择子菜单 使用⁽⁾移动游标看瞬时的电参数

# 5.3 出 电压,电流极值和均值

₩ 子菜单可显示电压、电流的 RMS 值、最大值、 最小值、平均值,以及正负瞬时峰值。 显示如下



项 功能

- 1 当前使用模式
- 2 网络瞬时频率
- 3 相关电压参数
- 4 相关电流参数
- 5 当前时间
- 6 剩余电量

# 5.4 器 各值同时显示

■ 子菜单显示所有电压、电流量测值(RMS, DC, THD, DF, CF, PST, KF)。

3 49 99	CO.		22.00 005 20.16
RMS	221.8 v	=	86.1 A-
DC	+0.1 v	-	
THD	3.8 x		61.4 x
CF	1.35		2.31
PST	0.27	KF	4.69
DF	3.7 ±		52.2 x

Figure 21: The information of the Simultaneous display screen.

- 项 功能
- 1 当前使用模式
- 2 网络瞬时频率
- 3 相关电压参数
- 4 相关电流参数
- 5 当前时间
- 6 剩余电量

#### 5.5 😐 相序计算

该功能可以通过三个步骤决定电网的相序,不管是 单相或者是平衡三相

## 5.5.1

步骤一: 把两根测试线接入 CA8230 的输入端口,然后把它们 连接到假定的 L1 和 L2 上面. 屏幕显示如下



# 按下┙继续

屏幕显示测试正在进行



### 5.5.2

步骤二 屏幕显示步骤二



把红色表棒接到假定的 L3 上,不要按任何键,等待测试结果

#### 5.5.3

屏幕显示相序结果 显示反序 L3 相超前 L2 相,L2 相超前 L1 相



#### 显示正序

#### L1 相超前 L2 相,L2 相超前 L3 相



# 5.5.4

报错信息 如果测量是不被允许的,那么一个报错讯息会显示 在屏幕上 等待时间过长 在第一步和第二步之间最长时间不能超过10秒钟







该功能用来检测电能和功率相关的参数

### 6.1 子菜单

<b>W</b> 50.	01 Hz	27/03	/05 20:19	-0000
C 27/0	)3/05 20:17:42	<u> </u>	03/05 20:19:1	6
KW Wh	+13.84 0000404	PF	+0.663	
kVAR VARh	<b>€11.64</b> €0000242	DPF	+0.761	C
	<b>+</b> 0000000	Tan	+0.853	
kVA VAh	20.86 0000554	ΦνΑ	<b>+0</b> 40°	Ŧ
	<mark>)</mark> @]			PEOC
	1 2		3	
项 功	能			
1 消	耗电能			
2 产	生电能			
3 帮	助			

菜单如下屏幕所示,余下各节将一一介绍。

注意:在三相平衡的连接情况下(在组态模式中的连

接中设定,参见4.7),一个**3**0的标志出现在屏幕上方, 屏幕上显示的数据为三相平衡电网所测试的数据.

电能和功率是三相所测得的,其他数据不变.

8	W	50.01 Hz	30	11 /05/06 21:48	
					(PE)

Figure 31: The  $3\phi$  sign at the top of the screen indicates three-phase configuration.

#### 6.2 ② 电能消耗

子菜单可显示

1 有功功率

2无功功率(容性和感性)

3视在功率。

注意: 在三相平衡的连接情况下(在组态模式中的连

接中设定,参见 4.7),一个30的标志出现在屏幕上方,

屏幕上显示的数据为三相平衡电网所测试的数据. 电能和功率是三相所测得的,其他数据不变.

#### 6.2.1 开始电能计算

1 通过 ▼ 键,选择^C工具(在右边的选择栏中) 2 按下 → 键开始进行计算 左上方显示开始计算的时间和日期

# **C** 27/03/05 20:17:42

#### 6.2.2 电能计算

仪器开始计算不同的电能,4 个计算表是计算电能消 耗,4 个计算表开始计算电能产生

## 6.2.3 停止电能计算

1 通过 ▼ 键,选择^①工具(在右边的选择栏中) 2. 按下 → 键停止计算 左上方显示停止计算的时间和日期

# ¹¹ 27/03/05 20:19:16

注意:停止是不可以更改的.不能重新开始,所有 8 个 电能计算表停止.

6.2.4 读取电能计算

测试数据如下

N 50.0"	Ha	27/09	/05 20:19	-
C 27/03	/05 20:17:42	27/03/05 20:19:16		
kW Wh	+13.84 0000404	PF	+0.663	,
KVAR VARh	611.64 f0000242	DPF	+0.761	0
0.5400.550	1000000	Tan	+0.853	
KVA VAb	20.86 0000584	ቀላላ	+040°	
C	0		7	

Figure 32: Example of display of power and energy measurements after metering.

值	说明
W	有功功率(三相为总和)
Wh	产生的有功电能
VAR	无功功率(🗧 感性; 🕇 容性)
VARh	产生的无功电能(🖲 感性; 🕇 容性)
VA	视在功率(三相为总和)
VAh	产生的视在电能
PF	功率因数
DPF	功率因数位移
Tan	正切
φ	相位角

# 6.2.5 电能计算清零

1 通过 ▼ 键,选择 算工具(在右边的选择栏中)

2 按下 键清零电能计算

所有的电能值清零,包括电能消耗(参见6.2),8个计算 表也清零.

# 7 區谐波模式

谐波模式可显示各次电压、电流和视在功率谐波率, 可测定非线性充电谐波电流,可分析相同等次谐波 引发的与其级别一致的问题(中性线、导体和马达 等的发热情况)。

# 7.1 子菜单

谐波模式子菜单如下表屏幕所列,以下章节将分别 介绍。



Figure 34: Example of display of Harmonics.

项	子菜单	参阅
1	相电压谐波分析	7.2
2	电流谐波分析	7.3
3	视在功率谐波分析	7.4
4	电压专家模式	7.5
5	电流专家模式	7.6
6	帮助	-
注意:	这些子菜单在三相平衡连接中	口不可使用

Figure 35: The 3ø sign at the top of the screen indicates a three-phase configuration.

(111)

11 /05/06 21 48

# 7.2 × 相电压

该子菜单显示电压谐波



相 功能







以百分比形式显示相对基值的谐波水平(1 等级) DC 等级: 直流成分

等级 (1 到 25): 谐波等级。当光标超过 25 级时 26 到 5

7 使用▲▼键盘\来选择工具
 ➡:子菜单的选择
 ➡:光标移动工具,使用▲▶选择谐波次数
 ➡:缩小
 ➡:放大

## 7.4 va 视在功率

子菜单显示视在功率谐波。



Figure 38: Example of display of the harmonics of the apparent power.





## 7.5 ¹ . 相电压专家模式

该子菜单不适用与三相平衡连接,只能在单相连接 情况下使用.该子菜单主要显示的是相电压 专家模式,主要应用于旋转电机马达,该菜单把谐波 分为正序,零序,负序,其参数如下:



Figure 39: Example of display of voltage harmonics according to their effect.

项	功能		
1	当然使用模式		
2	瞬时频率		
3	参数如下 -:负序 0:零序 +:正序	0 05 05 05 05 05 05 05 05 05 05 05 05 05	+ 07 107 119 119 129 220
4	当前时间和日	期	
5	电池剩余量		

6	0.5 %	0.4 %	0.4 x
	正序.零序,负	序的谐波含量	:总和

### 7.64--•电流专家模式

该子菜单不适用与三相平衡连接,只能在单相连接 情况下使用.该子菜单主要显示的是电流

专家模式,主要应用于旋转电机马达,该菜单把谐波 分为正序,零序,负序,其参数如下:



Figure 40: Example of display of current harmonics according to their effect.





2 转矩的损失
 3 电机振动
 4 负载电流过大
 5 降低电机使用寿命
 正序
 1 旋转电机过热
 2 负载电流过大
 3 中性线过载
 4 降低电机使用寿命

# 8 回截屏模式

截屏键的作用有: 截取多达 8 幅屏幕图供分析 参考 8.1 显示之前所储存之屏幕快照 用户可通过 PAT 软件将保存的截屏图传送到 PC 上

# 8.1 截屏

K	按	2	赵	り可	以	截	取	以	下	模	式
0	0	ф			3	w	հո	. 🖻	<u>)</u>		
截周	屏辽	セ程▫	þ, C	<b>晉</b> 图	标将	代	き当う	前活	动模	式图	标
0	D	¢		$\bigcirc$	W	Ш	u.	or	<b>)</b>	此	时

C.A 8230 主机已经记录了屏幕图像。



Figure 41: If the image memory is full, an attempted screen grab using the r key displays the wastebasket icon r (item 1).

## 8.2 快照处理

主要功能如下: 显示截屏图片列表(参见0) 显示指定截屏图片(参见 8.2.3) 删除数据(参见 8.2.4)

#### 8.2.1 功能

迅速按下 **©**键可进入屏幕截屏模式。 提醒:按住 **©**键约 2 秒将触发屏幕截屏功能



Figure 42: Example of display of a list of screen grabs.

#### 项 功能

- 1 当前使用模式
- 记忆卡容量提示。黑条标示已使用内存,白条 显示剩余容量。
- 3 当前时间和日期
- **4** 电池电量
- 5 屏幕翻页图标,按对应黄色按键可显示前后屏 幕。
- 6 已储存快照列表:

每个图标(如**赵**)显示所储存快照的类型(如记录、告警、波形等)。屏幕快照的时间和日期显示在图标右侧。

- 7 显示快照列表下一屏
- 8 删除屏幕快照

# 8.2.2 快照列表浏览

任一模式下,用户可按 🖻 键直接进入快照列表进 行快照浏览,如图 快照列表图例所示。

### 8.2.3 浏览快照

按如下步骤显示屏幕快照:

- 按下 ☎键,主机显示 ➤ 图标和快照列表 (参 见 图 图例)。
- 按▲▼键选择要显示的快照,被选快照的时间和 日期数字以粗字显示。
- 3. 按划键显示选中快照。
- 4. 按习键返回浏览快照列表

#### 8.2.4 删除快照

按如下步骤删除屏幕快照:

- 屏幕显示快照列表后(如图 42 图例所示),按 _____黄 色按键。
- 按▲▼键选择要删除的快照,被选快照的时间和日期数 字以粗字显示。
- 3. 按⁹键确认**删除**选中快照。



告警模式中, C.A 8335 可检测各值阈值并可及时告 警,可监视的各值有: Vrms, Urms, Arms, VPST, Vcf,, Acf, Hz, AKF, Vthd, Athd, W, VAR, VA, DPF, PF, Tan,Vh,, Ah 以及 Vah 等。

用户须先设置告警回差值才可进行告警监视;各被 监视值:

- 在组态/告警模式屏幕中定义(4.10节)。
- 在同一个屏幕中激活(红色项显示)。

用户可通过 PAT 程序将存储的告警记录传输到 PC 上(参阅相关用户手册)。

# 9.1 子菜单

告警模式所有子菜单如下图屏幕所列,以下章节将 分别介绍。



Figure 43: The screen when the Search for alarms mode is invoked.

项	子菜单	参阅
1	告警数据列表	9.3
2	设置告警模式	9.2
3	删除告警记录	9.4
4	帮助	

# 9.2 日告警侦测排查



Figure 44: Parameterising the starting and ending times of a campaign of alarms.

**9.2.1 步骤 1**: 设置告警时间排程 具体操作如下:

按\
 按\
 键进入开始时间设置,对应时间和日期域出现•,箭头,
 键增大或减小各值.按左右键选择相邻的选项

注意: 告警开始时间必须超过当前时间。按**V**键确 认告警开始时间预设。 2 按√键进入开始时间设置,对应时间和日期域出现•,箭头,▲▼键增大或减小各值.按左右键选择相邻的选项

注意: 告警停止时间必须超过开始时间。按**习**键确 认告警结束预设。

3 按▼键移至 ok 键为黄色高亮

9.2.2 步骤 2: 开始告警侦测

按 OK 黄色按键, C.A 8230 设置好的开始和停止时间开始告警侦测。

OK 图标消失

1 待开始侦测时主机屏幕显示侦测待命中

2 警侦测开始后屏幕显示侦测进行中。

3 警侦测结束后, OK 图标再次出现

9.2.3 手动停止侦测排查 告警结束时间到达前,用户可按对应 凸 图标(屏 幕右下方).

## 9.3 🖙 显示告警日志

▶ 子菜单显示告警日志。C.A 8335 的日志最多包含 4096 个告警值,按 ▶ 黄色按键查阅告警记录。

注意:所有的告警都是由不同的侦测排查得到,通过 时间标注来区分.

各项数据显示如下:

↓ -			11 / 05/0	05 17:02	Ð~
🗃 open Alar	M LOG			(1/2)	
11 /05/05 16:59	Vrms	Min	OV	28 <u>1.</u> s	
	Vrms	Min	OV	73 <del>.1</del> s	
	Vrms	Min	ΟV	1524 <del>1</del> 665	
17:00	Vrms	Max	230V	30s18 <del>,1</del> s	
17:02	Arms	Min	4A	1 <del>1</del> 100 S	
	Arms	Min	4A	1 <del>1 100</del> S	
	Arms	Min	4A	1 + 00 \$	
	Arms	Min	4A	1 + 8	
	Arms	Min	0A	90 <u>1</u> 00	
	Arms	Min	0A	3 <del>100</del> 8	¥

主要信息如下:

1 告警时间和日期

2 检测的参数(Vrms...)

3幅值(最大或者最小)

4 持续的时间

### 9.4 圖删除告警日志

1.按 쫼 黄色按键选中子菜单

2.使用▲▼键选择 YES,选择 NO 不删除任何数据退 出菜单



Figure 46: The Erase all alarms screen.

3.按下**一**键,确认删除数据 告警日志为空,自动返回列表菜单

10 回记录模式

记录模式可记录在组态/趋势图模式中所设定参数 的变化。(参见 4.9)

## 10.1 子菜单

子菜单如下屏幕所示,余下各节将一一介绍。



Figure 47: The screen when the Record mode is invoked.

项	子菜单	参见
1	设定记录	10.5
2	预设并开始一个记录排查	10.2
3	删除记录	10.7
4	起动电流模式	10.8
5	帮助	

#### 10.2 日 预设并开始记录

阶段1:

1 通过选择▶键来选择 日

2选择所要记录的组态

通过▲▼键和 → 来进行操作,用 → 进行确定 注意:组态 CONFIG 1和组态 CONFIG4 在组态 设定中设定(参见 4.9)

Set-up	CONFIG 1	
Start	:14/11/05 14:47	
Stop	:14/11/05 14:47	
Period	:10 min	
Name		

Figure 48: Example screen for configuration of new recording.

选择 ▼,按 ↓ 键确认记录开始的时间和日期,按
 ▲▼键增大或减小数值,按 ↓ 键在数据间切换。

注意:开始时间必须晚于当前时间。 按┙键确

认记录停止的时间和日期。

选择▼,按↓键确认记录停止的时间和日期,按
 ▲▼键增大或减小数值,按◀▶键在数据间切换。

注意:停止时间必须超过开始时间。 按┙键确 认记录停止的时间和日期。

5. 按▲▼键选择"周期",按ຟ键确认,相应域出现•,箭头。

按上下键增加或减少数值(可选值有 1 秒,5 秒,
20 秒,1 分钟,2 分钟,5 分钟,10 分钟 或 15 分钟). 按 ┙ 键确认。

注意:记录间隔周期即为测量各个要记录值的平均间隔积算时间。

 按•, 键选取"文件名"域, 使该域高亮显示。
 再按→键进入编辑模式输入文件名(长度不超过 8 个字符, 某些记录可使用同一名称)。

可用到的字母数字符为: A...Z、空格键和 0-9。按 键•,显示一个字符,再◀▶键切换到下一字符设 定。

7.按▼键,移动到 ok 域,按下 开始记录排查

#### 10.2.2

阶段 2:开始记录

1 按 **OK** 图标对应的黄色按键(屏幕的右下角), C.A 8230 主机便开始以用户之前设定的**开始**和停止 时间进行记录。此时 **OK** 图标消失,且出现 *Waiting to record* 

2开始时间到达前, 主机显示信息"记录待命中", 仪器开始计算刚才设定的参数.该周期记录的值和 等下显示的值一致.

3记录中屏幕上方出现的时间条,黑色代表所用时间, 白色代表剩余时间.



# 10.3 巴主动停止当前记录

在停止时间出现之前,按图标 ⁽¹⁾。对应的黄色键 (屏幕的右下角),记录就会自动停止。

### 10.4 自动停止记录

记录将会在用户设定的停止时间自动停止,此时 Recording in progress 的信息将会消失,用户可以查 看记录的数据(参见 10.5)或者进行下一条数据(参见 10.2)

### 10.5 🖼 显示记录列表

1. 🗁 子菜单显示做过的记录。通过②进行选择



Figure 50: Example of recording campaigns screen.

2选择记	录				
通过●,	和⊷进行	F选择.			
3 屏幕显	示.列表如	如下			
1   	2 3	4	5   13705/05 1	6 را براي 7:22	~
📄 RE	CORDING	ECI	AIRAG	3	]
Start Stop Period	:13/ :13/ :1 a	05/05 15:08 05/05 16:04			
SELEC	T MEASURE	MENT :			
Hz Vrms Vthd Vcf PST Arm					
<b>▲</b>				? ►	EN03
相	功能				
1	当前模式	式.			
2	记录参考	考			
3	记录开续	始时间和约	吉束时间		

4	内存使用率
5	当前时间日期
6	电源输入
7	所记录的参数
8	返回

9 当前屏幕

4选择对应参数的屏幕显示



相	功能
1	当前模式.
2	所对应光标的瞬时时间
3	所测参数的最大最小值和平均值
4	当前时间日期
5	电源输入
6	返回
7	当前选择参数
8	光标位置
9	帮助
7	使用▲▼ 键盘\来选择工具
	➡:子菜单的选择

		<mark>≌</mark> :)	七标利	多动口	二具,信	吏用◀	<b>【 ▶</b> 従	赴择		
	光标位置									
		<mark>屵</mark> :约	诸小							
		<mark>,</mark> 注	改大							
5 按	下	>返[	回上-	一菜单	鱼(通)	过左右	う键メ	そ选择	<b>译</b> )	
你	可	以	按	如	下	功	能	模	式	键



返回任意功能模式.

# 10.6 记录案例



- 1 光标所对应的瞬时时间
- 2 光标所对应数据的平均值,最大值 和最小值,在℃功能下长按左右键 可以快速移动光标.

10.6.2 电流(Arms)



相 功能

- 1 光标所对应的瞬时时间
- 2 光标所对应数据的平均值,最大值 和最小值,在♀□功能下长按左右键 可以快速移动光标.

10.6.3 有功功率(w)



 相
 功能

 _______
 _______

 1
 光标所对应的瞬时时间

 2 光标所对应功率的值,在^公功能 下长按左右键可以快速移动光标.

10.6.4 指定时间内的电能计算



#### 相 功能

- 1 光标所对应的瞬时时间
- 2 光标所对应的电能开始计算的开 始时间,在
   →功能下长按左右键可 以快速移动光标.

#### 操作步骤如下:

- 1 在₩模式下,通过左右键选择开始时间
- 2 通过左右键选择₩
- 屏幕显示和电能计算相关的记录开始和结束的日期 是相同的
- 3选择一模式
- 游标功能被激活
- 4 通过左右键移动游标'

游标和开始时间之间的电能将被计算

并且柱状图变成灰色的

注意:通过 ²和²工具既可以改变图表的周期和时间的刻度,列表如下:

Display integration period Scale of the graph

2 hours	5 days
1 hour	2 1/2 days
15 minutes	15 hours
10 minutes	10 hours
5 minutes	5hours
1 minute	1 hour
20 seconds	20 minutes
5 seconds	5 minutes
1 second	1 minute

10.7 🚟 删除记录

操作步骤如下:

1 通过左右键选择 📟 菜单 2 上下键选择所要删除的记录 你可以按以下功能键退出菜单	
🖾 🔶 🔘 🔍 W 🛄 🖻	
■ <u>■ 14/11/05</u> 15:13 ■	
ERASE RECORDING	
B       14/11/05 15:08 →14/11/05 15:10         ▲       ●         ▲       ●         ●       ●         ●       ●         ●       ●         ●       ●         ●       ●         ●       ●         ●       ●         ●       ●         ●       ●         ●       ●         ●       ●         ●       ●         ●       ●         ●       ●         ●       ●         ●       ●         ●       ●         ●       ●         ●       ●         ●       ●         ●       ●         ●       ●         ●       ●         ●       ●         ●       ●         ●       ●         ●       ●         ●       ●         ●       ●         ●       ●         ●       ●         ●       ●         ●       ●         ●       ●         ●       ●	2 选 通 3 定
4 通过左右键推出,或者按以下按键	:
@ 4 I V W L. ®	:

# 10.8 1/2 起动电流(开始电流)

该子菜单通过 229376 个采样点来计算启动电流的 波形,每个周期有 256 个采样点(对于 50HZ 的信号是 17.928 一个记录)当检测到启动电流,仪器记录自动 被触发(开始时间由用户自定),检测可根据操作者的 需要而停止,一旦记录完成,CA8230 显示启动电流的 波形,用户可以根据需要移动游标和放大缩小还观 察波形.

#### 相关信息:

- 1 曲线上光标标示点的瞬时值
- 2 最大瞬时电流值(整个启动周期)
- 3光标标示点的半周期电流 RMS 值
- 4 最大半周期电流 RMS 值(整个启动周期) 5 动时间和马达启动周期
- 注意: 电动机以稳定且正确的伺服控制频率启动前 必须有电压。

### 10.8.1 定义一个新的起启动电流记录

1 通过▶键选择起动电流子菜单 <del>\/~</del> 子菜单屏幕显示如下:



通过▲▼键选择一个域,然后按→确定,然后按▲▼减 小的增大这个域的值,可以通过《▶键来切换不同 的设定参数,最后按→确定并推出编辑菜单.

#### Triggering Threshold:

触发阈值,定义一个值,当超过该值时,记录会被被触发.

注意:触发和停止阈值都是半周期 RMS 值

#### Hysteresis:

回差,该值是给阈值定义一个回落区间,比如回差为20%,一个为1000A RMS 的触发阈值,则其停止阈值为980A RMS

注意:如果不符合停止阈值条件,记录将会无限制继续下去,知道内存为满,最大值为 5999A RMS

#### Start:

顶一个记录开始的时间

10.8.2 开始启动电流记录,选择 OK 然后确认. Waiting for triggering threshold 的信号出现在屏幕下方, 表示正在检测开始阈值,一旦检测到开始阈值,记录 会被触发,直到检测到停止阈值,记录结束.

# 10.9 凸主动停止当前记录

用于可以在记录开始之后在任意时间停止记录,操 作步骤如下;

1选择

# 2 按┙键确认

启动电流侦测就会停止

# 10.10 浏览启动电流记录

操作步骤如下:

1 按◀返回起动电流屏幕

2进入启动电流子菜单,按-建确认

屏幕显示如下:

<u></u>	14/11/05 15:19	
V~ INRUSH MODE	)	
<b>A</b>		
🎏 Open last inre	ush	
-		
📻 New Inrush		
T		
		IRO
3 启动电流记录列表	∉如下・	
		i.
	14711705 15:32	
V ~ OPEN INRUSH		
Inrush Specification	3	
Start Threshold	: 110Arms	
Hysteresis	: 0%	
Start Date	: 27/03/05 19:49	
Duration	: 02.607s	
(🛶 to continue)		
- I 🗢 📂	?►	IDA
4 亩次按下		avu
ҡҡ҄が╜Γ:		



关信	息如卜:
项	功能
1	当前使用模式
2	RMS 1/2max:半周期最大有效值
	PEAK:整个启动周期瞬时最大值 t:持续时间
3	游标(可以通过◀▶键移动游标,对应的有颜色 的区域是游标所处区域)
4	t:游标所处的瞬时时间
	I:游标所对应的瞬时值 RMS1/2:游标对应半周期有效值
5	帮助
6	使用 ▲ ▼ 键盘\来选择工具
	➡:子菜单的选择
	≌:光标移动工具,使用◀▶选择光标位 置
	<mark>戶</mark> :缩小
	<mark>必</mark> :放大
	-3 A:显示暂态过程中的 3 相电流和中性线电
	流 - A1, A2 or A3: 依次显示相 1、相 2 及相 3 的电流

当无法检测到停止阈值时,信息"stopping threshold

not Detected"显示在屏幕上



通过放大缩小工具所观察的波形显示如下:



# 11.1 开机

# 按下绿色⑪开机

应用软件加载过程中,C.A8230 主机屏幕将显示开 机主页,屏幕左下角显示软件版本和主机序列号。



5 秒后显示波形页面:



电量充足时, C.A 8230 由电池供电; 若电量不足, 主机将显示的告警信息(参阅 3.9.1)。该仪器亦可 由专用外部电源供电(图 3, 第 1 项),此时可不用 电池。

#### 11.2 C.A8230 组态设定

操作步骤如下:

1 按 键,主机显示组态设定屏幕

2按▲▼键选择要修改的参数.按 \键进入子菜单

# 11 使用

C.A 8230 仪器必须先组态设定方可使用,相关内容 请参考本手册第四章。

请务必遵守如下使用前须知:

请勿测量对地超过 600V RMS 的电压。 安装或移除充电电池前,请确保主机未连接任何测 试连线。



3 在子菜单中,在子菜单内,用每○和金金键浏览, 按▼ 确认,详细操作请查阅 4.3-4.12 章节。

注意:每次测量,以下几点需检查或修改:

功能	参阅
定义计算方法	4.6
选择接线方式 (单相/平衡三相).	4.7
由所连电流钳的类型来设定转换系数	4.8
将要记录的参数 (趋势图模式).	4.9
定义告警阈值	4.10

4 按下⊷ 键返回组态设定屏幕

# 11.3 导线连接

按如下方式连接测量导线:



项 **功能** 

1 外部电源输入

 2 4个电流输入接口连接电流钳头(MN 钳头, C 钳头, Amp*FLEX*™,等)

3 电压线(正极)

2 电压线(负极)

连接测量导线,操作如下:

1 电压测量:把电压线连接到电压输入口的正极和负极

2 电流测量: 4 个连接口(第 2 项)。测量前请设定 电流钳头的变比(参阅 4.8 章节)。

根据以下图表将测试导线连接到待测电路。

### 11.3.1 单相连接



11.3.2 平衡三相



# 11.4 波形模式

提示:任何屏幕都可通过 ¹键来截取,参考第8章,当 CA8230 连接至电网时,按下 ¹键. **11.4.1 显示波形** 

参考 5.2

**11.4.2 显示最大,最小,峰值** 参考 5.3

11.4.3 显示所有值 RMS, DC, THD, CF, PST, KF, DF

参考 5.4

11.4.4 显示相序

参考 5.5

# 11.5 告警模式 🛆

提示:任何屏幕都可通过 3 键来截取,参考第8章 11.5.1 组态设定 设定要检测的参数,参见4.10 11.5.2 开始时间 功能介绍详见9.2 11.5.3 自动停止 告警侦测将在用户设定的结束时间自动停止 11.5.4 主动停止 功能介绍详见9.2.3 11.5.5 浏览告警日志 功能介绍详见9.3 **11.5.6 删除告警日志** 功能介绍详见 9.4

# 11.6 记录模式 🥯

提示:任何屏幕都可通过¹⁹⁹键来截取,参考第 8 章 11.6.1 组态设定 设定要检测的参数,参见 4.9 11.6.2 开始一个记录模式 功能介绍详见 10.2 11.6.3 浏览记录 功能介绍详见 10.5

# 11.7 功率模式

提示:任何屏幕都可通过 **③**键来截取,参考第8章 **11.7.1 测量电能消耗** 功能介绍详见 6.2 **11.7.2 测量电能产生** 功能介绍详见 6.3

# 11.8 谐波测量 📖

提示:任何屏幕都可通过 () 键来截取,参考第 8 章 11.8.1 电压测量 详见 7.2 11.8.2 电流测量 详见 7.3 11.8.3 视在功率测量 详见 7.4 11.8.4 电压专家模式 详见 7.5 11.8.5 电流专家模式 详见 7.6

### 11.9 传输数据至 PC

PAT 软件自动定义 C.A 8230 与 PC 之间的传输速度。仪器测得的所有数据皆可保存供将来使用。 注意: 传输不会删除已存数据。

# 11.10 删除数据

用户在测试前可删除已存数据以释放存储空间。参 阅 4.11 章节

# 11.11 关机

用户按下绿色①关机

处于记录状态时, C.A 8335 需先确认才可关机,信息 Are you sure you want to switch off the instrument?出 现通过^{会会}键选择 *Yes* 或 *No* 

如选择 NO,记录将继续。

如选择 YES,截止到那一时刻的数据记录将被 保存,随后仪器关机。

# 11.12 CA8230 供电

11.12.1 电池充电
 参见 3.9.3
 11.12.2 电源工作
 参见 3.9.6

# 12 维护和保养

### 12.1 重要建议

维修时只能使用特定的零配件。对于第三方(非本 公司售后服务部门或经认可的维修人员)在维修中 造成的意外后果,我们概不负责。

### 12.2 电池充电

当使用专用适配器将仪器连接到外部 AC 电源时, 仪器内电池将自行充电。

为了保证安全和确保电源适配器的工作正常,更换 充电电池时务必关机。

请勿将电池投入到火中。

请勿将电池置于高于100度的环境中。

请勿将电池短路。

注意:移除电池后,仪器的时间和日期信息将保持 一分钟。

#### 12.3 清理外壳

清洁时请用软布蘸取肥皂水擦拭,然后用湿布擦干。 请勿使用任何化学试剂。

#### 12.4 校准

所有的测试与测量都必须定期校正, C.A. 8335 也不例外。

建议每年至少做一次校准;如要检测和校准,请与 我们的分公司或代理商联系。

获取更多信息请联系:: Tel.: 02 31 64 51 43 Fax: 02 31 64 51 09

#### 12.5 维修

#### 12.5.1 保修期内或保修期外的维修

请将仪器送到 C.A 或指定代理商。 获取更多信息请联系:: Tel: 02 31 64 51 43

Fax: 02 31 64 51 09

12.5.2 法国外的维修

不管什么情况,请将仪器送到 C.A 或指定的经销商。

## 12.6 内部软件升级

用户可通过 RS232 连接线对 C.A 8335 进行内部软件升级以集成更多功能,新版本软件可在 Chauvin Arnoux 网站(www.chauvin-arnoux.com)下载。

内部软件的更新意味着与硬件版本兼容,该版本信息显示在组态菜单下的关于子菜单界面。

警告:升级内部软件将删除仪器内所有数据,包括 组态设定,告警日志,截屏,启动电流记录,运行 记录等。升级前请通过 PAT 软件将相关数据备份至 PC。

#### 12.7 电流钳

电流钳头必须按如下方式维护和校:

1 清洁时请先用软布蘸取肥皂水擦拭,然后用湿布 擦干。

2 用布擦拭电流钳,保持钳头 (MN93, MN93A, C193 及 PAC93)钳口部分干净,在裸露的金属部 分可抹油以防生锈。

3 每两年做一次校准

按键	功能、导航和模式切换,可以戴手套 操作
支撑架	保持仪器与水平面成 30 角
电池仓	用来装可充电电池
尺寸	总体: 211 x 108x 60MM
重量	880 克(含充电电池).

# 13.1 电源

13.2.1 外部电源供电				
类型	专用外部电源 600 V,RMS, cat III.			
使用范围	230 V ± 10 % @ 50 Hz 和 120 V ± 10 % @ 60 Hz.			
最大功率	23.7VA.			

# 13.2 电池供电

C.A 8230 可在不与外部电源连接的情况下使用,也可以在电源掉电的时候使用。

电池	6 节 NiMH 或者 NiCd 充电电池
容量	1800mAh (NiMH ) 或 者 900
	mAh(NiCd)的容量
标称电压	1.2 V 每一节,总共 7.2V
寿命	最少 300(NiMH )或者 900(NiCd)次充
	电/放电使用
充电电流	0.6A-0.8A
充电时间	约 4 小时(NiMH)
	约为1.5 小时(NiCd)
工作温度	[0 °C; 50 °C]
充电温度	[10 °C; 40 °C]
储存温度	存储 ≤ 30 天: [-20 °C; 50 °C]
	存储: 30-90 天:

# 13 总体指标

外壳	弹性体包覆机身外壳设计
连接头	2个 电压测量插口
	1 个 特定电流连接头(自动识别电流 传感器)
	1个 专用外部电源连接头
	1个光口线

```
[-20 °C; 40 °C]
存储: 90 天 - 1 年:
```

[-20 °C; 30 °C]

#### 13.2.3 能耗

待机模式

屏幕亮度为	150%时

40mA

200 mA

#### 13.3 适用范围

#### 13.3.1 机械条件

根据 IEC 61010-1, C.A 8335 是一台便携式移动 仪器。

- §工作位置:任何位置
- §工作时参考位置:放在水平台面上,用支撑架立着 或平放。
- § 硬度 (IEC 61010-1)
- § 落体试验 (IEC 61010-1)
- § 密封性: IP 50 遵照 NF EN 60529 A1 (电气 IP2X 对于端子).

#### 13.3.2 电磁兼容性

- **13.3.2.1 抗干扰性**(根据 NF EN 613261 1 A3) § 抗静电放电 (IEC 61000-4-2)
- §抗辐射 (根据 IEC 61000-4-3 和 IEC 61000-4-8)
- § 抗快速暂态干扰 (IEC 61000-4-4)
- § 抗电压冲击 (IEC 61000-4-5)
- § 抗射频干扰 (根据 IEC 61000-4-6)
- § 电压中断 (根据 IEC 61000-4-11)
- 13.3.2.2 干扰性(根据 NF EN 61326 1 A3)
- §A 类仪器(不接电源).
- § B 类仪器 (接电源).

### 13.3.3 使用安全

§ 应用遵照 IEC 61010-1 安全条例. (电压输入端口之间用保护阻抗隔离). § 污染等级: 2.

- § 安装 cat III , 操作电压 600 V_{RMS}.
- §端口相对地双重隔离(符号 D).
- § 电压输入端,电源,以及其他 I/O 端口之间均采 用双重隔离(符号回).
- § 室内使用

#### 13.4 环境条件

#### 13.4.1 气候条件

下图显示关于环境温度和湿度的条件



2= 使用范围

- 3=储存条件范围(含电池)
- 4=储存条件范围(不含电池)

#### 13.4.2 海拔条件

使用: [0 m; 2,000 m]

储存: [0 m; 10,000 m]

# 14.1 参考条件

参数	参考条件
环境温度	23 °C ± 3 K
湿度(相对湿度)	[ 45 % ; 75 % ]
大气压强	[860 hPa; 1060 hPa]
相电压	[50 V _{RMS;} 600 V _{RMS} ] (不含直流)(< 0.5 %)
标准电路输入电压	[30 mV _{RMS} ; 1 V _{RMS} ] (不含直流) (< 0.5 %)
Rogowski 电路输入电压	11.8 mVRms to 118 mVRms(不含直流) (< 0.5%).
电网频率	50 Hz ± 0.1 Hz 和 60 Hz ± 0.1 Hz
移相	0° (有功功率) 和 90° (无功功率)
谐波	< 0,1 %
电压不平衡度	3 ⁰ mode OFF

# 14.2 电气特性

14.2.1 电压输	<b>ì入特性</b>		
使用范围:	0 V _{RMS} 到 600V _{RMS} AC+DC		
	相与中性线		
	0 Vrms 到 660 Vrms AC+DC		
	线电压(要满足相对地的电压不超 过 600 V _{RMS} )		
输入阻抗:	<b>451 kΩ (</b> 相和中性点之间,以及中 性点与地之间)		
允许过载	1.2 x V _{nom} (持续)		
	2 x V _{nom} (1s).		
14.2.2 电流输	<b>ì入特性</b>		
工作范围:	[0 V; 1 V]		
输入阻抗:	1 MΩ.		

AmpFLEX[™] 组态将电流输入转换成积分器组合
('Rogowski'通道)能够解读专用于柔性线圈
(Rogowski)的信号,输入阻抗在此情况下,下降
到12.4 kΩ。

1.7 V.

#### 14.2.3 带宽

允许过载

测量方式	每周期 <b>256</b> 点 ,比如:
	对  50 Hz: 6.4 kHz (256 × 50 ÷ 2).
	对 60 Hz: 7.68 kHz (256 × 60 ÷ 2).
模拟量到 -3 dB:	> 10 kHz.

14.2.4 主机特性(不含电流钳)

注意:在平衡三相模式下是无效的(标准单相连接) 下表数据特指理想电流钳(完全线性且没有相位 移)。电流特性及其派生值由两种情况分别介绍:一 组"不含 AmpFLEXTM,另一组"含 AmpFLEXTM。

测量值		测量范围			参考范围内的	
		最小值	最大值	显示精度	最大误差	
	频率	40 Hz	69 Hz	0.01 Hz	±(1 pt)	
林	目电压 直(TRMS)	6 V	600 V ⁽¹⁾	0.1 V	±(0.5 % + 2 pts)	
直	流电压	6 V	600V	0.1 V	±(1 % + 5 pts)	
	不含 Amp <i>FLEX</i> ™	$I_{nom} \div 1000$	$1.2 \times I_{nom}$	0.1 A I < 1000 A	±(0.5 % + 2 pts)	
电流		[A]	[A]	1 A I≥1000 A	±(0.5 % + 1 pt)	
(TRMS)	含 Amp <i>FLEX</i> TM	10 A	6500 A	0.1 A I < 1000 A	±(0.5 % + 1 A)	
				1 A I≥1000 A		
直	流电流	1 A	$1700  A^{(3)}$	0.1 A I < 1000 A 1 A I ≥ 1000 A	±(1 % + 1 A)	
由流峰值	不含 Amp <i>FLEX</i> TM	0.4	$1.7  imes I_{nom}$ $[A]^{(4)}$	0.1 A I < 1000 A	$+(1\% + 1\Delta)$	
·G9//·平田	含 Amp <i>FLEX</i> ™	UA	9,190 A ⁽⁵⁾	1 A I≥1000 A	$\pm (1 \ 70 + 1 \ A)$	
	不含 Amp <i>FLEX</i> ™	$I_{nom} \div 100$	$1.2  imes I_{nom}$	0.1 A I < 1000 A	±(1 % + 5A)	
半个周期电流	ты тапр 2201	[A]	[A]	1 A I≥1000 A	±(1 % + 1 A)	
TRMS ⁽⁷⁾	含 Amp <b>FLEX™</b>	100 A	6500 A	0.1 A I < 1000 A 1 A I ≥ 1000 A	±(1.5 % + 4 A)	
相目		6 V	850V ⁽⁶⁾	0.1 V	±(1 % + 5 V)	

半周期相电	县压 TRMS ⁽³⁾	6 V	600 V ⁽¹⁾	0.1 V	±(0.8 % + 5V)
ide tot	* <b>TT</b> ₩**	1	4	0,01	±(1 % + 2 pts)
<b>叫軍1</b> 目	1.口蚁	4	9,99	0,01	±(5 % + 2 pts)
有功功率	不含 Amp <i>FLEX</i> ™	0W	9999 kW	4 digits	$\pm (1 \%)$ Cos $\phi \ge 0.8$ $\pm (1.5 \% + 10 \text{ pts})$ $0.2 \le \text{Cos } \phi < 0.8$
有功功举	含 Amp <i>FLEX</i> ™ & Mini-Amp <i>FLEX</i>	0W	9999 kW	4 digits	$\pm (1 \%)$ Cos $\phi \ge 0.8$ $\pm (1.5 \% + 10 \text{ pts})$ $0.5 \le \cos \phi < 0.8$
无功功率	不含 Amp <i>FLEX</i> ™ & Mini-Amp <i>FLEX</i>	0 VAR	9999 kVAR	4 digits	$\pm (1 \%)$ Sin $\phi \ge 0.5$ $\pm (1.5 \% + 10 \text{ pts})$ $0.2 \le \text{Sin } \phi < 0.5$
(感性、容性)	(感性、容性) 含 Amp <i>FLEX</i> [™] & 0 VAR 9999 kV Mini-Amp <i>FLEX</i>	9999 kVAR	4 digits	$\pm (1.5 \%)$ Sin $\phi \ge 0.5$ $\pm (2.5 \% + 20 \text{ pts})$ $0.2 \le \text{Sin } \phi < 0.5$	
视在功率		0 VA	9999 kVA	4 digits	±(1 %)
功率	<b>逐因数</b>	-1	1	0,001	$\pm (1.5 \%)$ Cos $\phi \ge 0.5$ $\pm (1.5 \% + 10 \text{ pts})$ $0.2 \le \text{Cos } \phi < 0.5$

- (1)  $1,2 \times 1000 \times \sqrt{2} = 1700 A$
- (2)  $1,2 \times I_{nom} \times \sqrt{2} = 1,7 \times I_{nom}$
- (3)  $6500 \times \sqrt{2} = 9190A$
- (4)  $600 \times \sqrt{2} = 850V$
- (5) 偏差绝对值不能超过振幅峰值的 95%。亦即: s(t) = S × sin(ωt) + O, 其中: |O| ≤ 0.95 × S (S 为正值) 波形模式下的最大、最小值与告警和启动电流模式下的 V_{RMS}、 A_{RMS} 值(不含中性线), 都是半周期 值测量值。

(6)对地电压,相电压测量时不能超过 600V RMS (三相连接中不能超过 380V RMS)

		测量范围				
:	测量	最小值	最大值	显示精度	参考范围内的最大误差 	
	不含 Amp <i>FLEX</i> ™	0 Wh	9999 MWh	4 digits	$\pm (1 \%)$ Cos $\phi \ge 0.8$ $\pm (1,5 \%)$	
有功电能	含 Amp <i>FLEX</i> ™	0 Wh	9999 MWh	4 digits	$0,2 \le \cos \phi < 0.8$ ±(1 %) Cos \phi \ge 0.8 ±(1,5 %) 0,5 \le Cos \phi < 0.8	
	不含 Amp <b>FLEX™</b>	0 VARh	9999 MVARh	4 digits	$\pm (1 \%)$ Sin $\phi \ge 0.5$ $\pm (1.5 \%)$ $0.2 \le Sin \phi < 0.5$	
无功电能	含 Amp <i>FLEX</i> ™	0 VARh	9999 MVARh	4 digits	$\pm (1.5 \%)$ Sin $\phi \ge 0.5$ $\pm (2,5 \%)$ $0.2 \le Sin \phi < 0.5$	
视	在电能	0 VAh	9999 MVAh	4 digits	±(1 %)	
退相位		-179°	180°	1°	±(2°)	
Tangent VA ³ 50 VA		-32.76	32.76	0.001 Tan φ < 10 0.01 Tan φ ≥ 10	$\pm(1^\circ)$ for $\phi$	
<b>功率</b> (	因数位移 DPF)	-1	1	0.001	±(1°) for φ & ±(5 pts) for DPF	
谐波比率 Î [1; 50] (V _{RMS} > 50 V) 不含 AmpFLEX TM (I _{RMS} > 3 × I _{nom} ÷ 100) 含 AmpFLEX TM (I _{RMS} > I _{nom} ÷ 10)		0 %	999,9 %	0,1 %	±(1 % + 5 pts)	
(V _{RM} 不含 A (I _{RMS} >	贅波角 _{IS} > 50 V) Amp <i>FLEX</i> TM 3 × I _{nom} ÷ 100)	-179°	180°	1°	±(3°) ∈ [1; 25]	

含 AmpFLEXTM				±(10°)	
$(I_{RMS} > I_{nom} \div 10)$				∈ [26; 50]	
总谐波率	0.0/		0.1.%		
(THD 或 THD-F) £ 50	0 %	999,9 %	0,1 %	$\pm (1 \% + 5 \text{ pts})$	
失真因数	0.0/		0.1.%	1(1.0) + 10.5(-)	
(DF 或 THD-R) £ 50	0 %	999,9 %	0,1 %	$\pm (1 \% + 10 \text{ pts})$	
K 因数	1	99,99	0,01	±(5 %)	

**注意**: |Cos φ| = 1 或 |Sin φ| = 1 时,功率和电能测量偏差值最大且代表其它角误差值。

### 14.2.5 电流钳特性

电流钳误差由仪器内标准修正值自动修正,该修正值应用于修正相位和振幅,其值取决于所连传感器类型 (自动识别)和电流值增量。电流 RMS 值测量误差及相位误差与附加误差(加到仪器的误差)有关,这些 附加误差以参数形式由仪器计算得出(如功率、电能、功率因数、正切值等)。

电流钳类型	电流 TRMS	I _{RMS} 最大误差	相位角f最大误差	
	[1 A; 10 A]		N.S.	
PAC93 钳头	[10 A; 100 A]	$\pm (1.5 \% + 1 \text{ A})$	±(2°)	
1000 A	[100 A; 800 A]	±(3 %)	±(1,5°)	
	[800 A; 1200 A]	±(5 %)		
	[1 A; 3 A]		N.S.	
C193 钳头	[3 A; 10 A]	±(0,8 %)	±(1°)	
1000 A	[10 A; 100 A]	±(0,3 %)	±(0,5°)	
	[100 A; 1200 A]	±(0,2 %)	±(0,3°)	
Атр <i>FLEX</i> ^{тм} А193	[10 A; 100 A]	±(3 %)	±(1°)	
3000A	[100 A; 6500 A]	±(2 %)	±(0,5°)	
	[0.5 A; 2 A]	$\pm (2.0( \pm 1.4))$	N.S.	
MN93 钳头	[2 A ; 10 A[	$\pm (3 \% + 1 A)$	±(6°)	
200 A	[10 A; 100 A]	±(2.5 % + 1 A)	±(3°)	
	[100 A; 240 A]	±(1 % + 1 A)	±(2°)	
MN02A ##3	[100 mA; 300 mA]	+(0.7.% + 2.m.Å)	N.S.	
	[300 mA; 1 A]	$\pm (0.7 \ \% + 2 \ \text{mA})$	±(1,5°)	
100 A	[1 A; 120 A]	±(0,7 %)	±(0,7°)	
MN02A 供到	[5 mA; 50 mA]	$\pm(1 \% + 0.1 \text{ mA})$	±(1,7°)	
	[50 mA; 500 mA[	±(1 %)		
5A	[500 mA; 6 A]	±(0,7 %)	Ξ(1)	
Adapter	[5 mA; 50 mA]	±(1 %)	±(1°)	
5 A	[50 mA; 6 A]	±(0,5 %)	±(0°)	

# 15 附录

本章列出 C.A.8230 计算各种参数的数学公式 。

## 15.1 数学公式

#### 15.1.1 网络频率和采样

对电网的采样为每周期(40Hz 到 70Hz)获取 256 个点。由于要计算无功功率,不平衡度和谐波率和 谐波角,采样是必要的。

设备在电网频率上的采样取决于默认的电压通道, 一旦电压不足,采样过程将由电流通道提供

## 15.1.2 半周期电压电流有效值

相电压半周期的有效值

$$Vdem = \sqrt{\frac{1}{NechLobe}} \cdot \frac{\sum_{n:Zéro suivant}}{\sum_{n:Zéro}} W[n]^2$$

线电压半周期的有效值

$$Adem = \sqrt{\frac{1}{NechLobe}} \cdot \frac{\sum_{n:Zéro suivant}^{Zéro suivant}}{\sum_{n:Zéro}} A[n]^2$$

**注意**:用半周期值计算,可以避免错失任何波形错误。

#### 15.1.3 半周期有效最大最小值

Vmax = max( Vdem ) , Vmin = min( Vdem )

Amax = max( Adem ) , Amin = min( Adem )

#### 15.1.4 PST 计算

该方法是受标准 CEI 61000 - 4 -15 启示而得到的.

PST 每 10 分钟更新一次。

#### 15.1.5 电压和电流峰值计算

Vpp = max(V[n]), Vpm = min(V[n])  $n \in [0..NECHPER -1]$ 

App = max(A[n]), Apm = min(A[n]) 
$$n \in [0..NECHPER-1]$$

#### 15.1.6 峰值因数

电压峰值因数

$$\operatorname{Vef} = \frac{\operatorname{Vpp} - \operatorname{Vpm}}{2 \cdot \sqrt{\frac{1}{NECHPER} \cdot \sum_{n=0}^{NECHPER - 1} \mathcal{V}[n]^2}}$$

电流峰值因数

$$Acf = \frac{App - Apm}{2 \cdot \sqrt{\frac{1}{NECHPER} \cdot \sum_{n=0}^{NECHPER} A[n]^2}}$$

15.1.7 电流电压 1 秒有效值

$$Vrms = \sqrt{\frac{1}{NechSec} \cdot \sum_{n=0}^{NechSec - 1} \mathcal{V}[n]^2}$$

$$\operatorname{Arms} = \sqrt{\frac{1}{NechSec} \cdot \sum_{n=0}^{NechSec-1} A[n]^2}$$

NechSec: 1S 内采样的数目

#### 15.1.8 谐波计算

计算通过 FFT (16 位) 1024 点,4 周期没有窗口化 (看 CEI 1000-4-7). Vharm 和 Aharm 是以基波值为基 础通过实部以及虚部进行计算的

$$V thd = \frac{\sqrt{\sum_{n=2}^{50} V harm[n]^2}}{V harm[1]}$$
$$A thd = \frac{\sqrt{\sum_{n=2}^{50} A harm[n]^2}}{A harm[1]}$$

#### 15.1.9 K因数

K 因数

$$Akf = \frac{\sum_{n=1}^{n=50} n^2 \cdot Aharm[n]^2}{\sum_{n=1}^{n=50} Aharm[n]^2}$$

15.1.10 单相连接中的功率计算 有功功率

$$W = \frac{1}{NechSec} \sum_{n=0}^{NechSec-1} V[n] \cdot A[n]$$

无功功率

$$VAR = \frac{1}{NechSec} \sum_{n=0}^{NechSec-1} VF[n-NECHPER/4]AF[n]$$
(不含

谐波)

# 15.1.11 平衡三相连接中的功率计算

总的有功功率:

$$W = \frac{-3}{\sqrt{3 \times NechSec}} \sum_{n=0}^{NechSec-1} U[n - NECHPER/4].A[n]$$

总的视在功率:

$$VA = \frac{3}{\sqrt{3}} \cdot U_{RMS} \cdot A_{RMS}$$

总的无功功率(含谐波)

 $VAR = \sqrt{VA^2 - W^2}$ 

总的无功功率(不含谐波)

$$VAR = \frac{3}{\sqrt{3} \times NechSec} \sum_{n=0}^{NechSec-1} UF[n].AF[n]$$

#### 15.1.12 比率

功率因数

 $PF = \frac{W}{VA}$  位移功率因数

 $DPF = cos(\phi)$ 

余弦角 是基波电压相电流间的相位角

$$\cos(\phi) = \frac{\sum_{n=0}^{NechSec-1} VF[n] \cdot AF[n]}{\sqrt{\sum_{n=0}^{NechSec-1} VF[n]^2} \cdot \sqrt{\sum_{n=0}^{NechSec-1} AF[n]^2}}$$

### 15.1.13 电能计算

有功功率消耗:

Whe = 
$$\sum_{\text{Tint}} \frac{W}{3600}$$
 pour W  $\ge 0$ 

有功功率产生:

Whg = 
$$\sum_{\text{Tint}} \frac{-W}{3600}$$
 pour W < 0

视在功率消耗:

VAhc = 
$$\sum_{\text{Tint}} \frac{VA}{3600}$$
 pour W  $\ge 0$ 

视在功率产生:

$$VAhg = \sum_{Tint} \frac{VA}{3600} \text{ pour W} < 0$$

** *

感性有功功率消耗:

VARhLc = 
$$\sum_{\text{Tint}} \frac{VAR}{3600}$$
 pour VAR  $\ge 0$  et W  $\ge 0$ 

容性有功功率消耗:

$$VARhCc = \sum_{Tint} \frac{-VAR}{3600} \text{ pour VAR} < 0 \text{ et } W \ge 0$$

容性有功功率产生:

$$VARhCg = \sum_{Tint} \frac{VAR}{3600}$$
 pour  $VAR \ge 0$  et W < 0

感性性有功功率产生:

VARhLg = 
$$\sum_{\text{Tint}} \frac{-VAR}{3600}$$
 pour VAR < 0 et W < 0

## 15.2 回差

回差是一种过滤原理,通常用在临界值侦测情况下 比如报警模式 (看章节 4.10).正确的设置回差 值 可以避免因测量值在临界值上下波动而导致状 态的反复变化。

# 15.2.1 骤升侦测

假定回差为 2%,骤升侦测结束时的值为参考临界 电压的(100 %-2 %),即 98 %



15.2.2 骤降和中断侦测

假定回差为 2%,骤降侦测结束时的值为参考临界 电压的(100 %+2 %),即 102 %



# 15.3 波形模式中的最小刻度值

对于所有型号的电流钳

最小电流显示和最小刻度值表

电流传感器的类型	最小电流有效值 [A]	最小电流刻度值 [A]
Amp <b><i>FLEX</i>™</b> 3000 A	9	60
PAC93 1000 A 电流钳	1	10
C193 1000 A 电流钳	0.5	10
MN93 200 A 电流钳	0.5	2
MN93A 100 A 电流钳	0.2	1
MN93A 5 A 电流钳	(初级× 5) ÷ (次级× 1000)	(初级×5×10)÷(次级×1000)
5 A 适配器	(初级× 5) ÷ (次级× 1000)	(初级×5×10) ÷ (次级×1000)

Arms ≤最小电流显示

ARMS = 0

含有 MN93A 钳 (5A 量程) and the 5A 适配器

最小电流显示 ≤0.2 或者[最小电流显示]=0.2

最小电流刻度值 ≤1 或者最小电流刻度值=1

最小电压显示是 5V

 $V_{RMS} \le 5 V \Rightarrow V_{RMS} = 0 V$ 

# 16 订购

# 16.1C.A8230 电能质量分析仪

C.A 8230 主机	P01 1606 30
C.A 8230 MN93A	P01 1606 31
C.A 8230 AMP450	P01 1606 32

<b>`</b> 插	ſΫ	惥	ß	付	
1702	∽	'НН	11		•

§1x 肩背包( No.5)

§1x6芯可充电电池组(NiMH)

- § 1x 黑色带有香蕉插头的测量导线(1.5mm)
- § 1x 红色带有香蕉插头的测量导线(1.5mm)
- § 红色表棒(4mm)
- § 黑色表棒(4mm)
- §1x 黑色鳄鱼夹
- § 1x 红色鳄鱼夹
- §1x 电源适配器
- § 1 光口 usb 线
- §1xDATAViewer 软件
- §1x用户手册光盘(5国语言)

# 16.2 附件

MN93 钳头	P01 1204 25
MN93A 钳头	P01 1204 34

PAC93 钳头	P01 1200 79
C193 钳头	P01 1203 23
Amp <b>FLEX</b> ™ A193 450	P01 1205 26
Amp <b>FLEX™</b> A193 800	P01 1205 31
5A 三相适配盒	P01 1019 59

# 16.3 配件

MN93A BK	P01. 1204. 34
NO.5 背包	P01. 2980. 49
AmpFLEX, A193, 450mm, BK	P01. 1205. 26
两根香蕉线(1.5mm), RD+BK	P01. 2950. 91
两个鳄鱼夹 RD+BK	P01. 1018. 48
两根(4mm)表棒 RD+BK	P01. 1018. 55
电源适配器:230V,50HZ(600V CATIII)	P01. 1606. 40
6 节 1.2V NiMH 可充电 AA 电池 (1800 mAh)	P01. 2960. 37
光口 usb 线	HX0056-Z
DB9F 光口串行线	P01. 2952. 69
DB9M/USB 串行适配器	HX0055



04 – 2010 691604A00-CN-Ed2

http://www.chauvin-arnoux.com

190, rue Championnet - 75876 PARIS Cedex 18 - FRANCE Tel.: +33 1 44 85 44 85 - Fax: +33 1 46 27 73 89 - <u>info@chauvin-arnoux.fr</u>